Detection and Segmentation Text from Natural Scene Images Based on Graph Model

نویسندگان

  • XIAOPEI LIU
  • ZHAOYANG LU
  • JING LI
  • WEI JIANG
  • Xiaopei Liu
  • Zhaoyang Lu
  • Jing Li
  • Wei Jiang
چکیده

-This paper presents a new scheme for character detection and segmentation from natural scene images. In the detection stage, stroke edge is employed to detect possible text regions, and some geometrical features are used to filter out obvious non-text regions. Moreover, in order to combine unary properties with pairwise features into one framework, a graph model of candidate text regions is set up, and the graph cut algorithm is utilized to classify candidate text regions as text or non-text. As for segmentation, a two-step technique for scene text segmentation is proposed. Firstly, the K-Means cluster algorithm is employed in color RGB and HSI color space respectively, and the better result is selected as initial segmentation. Then in minimum energy framework, graph cut is employed for re-labeling verification. Experimental results show the satisfactory performance of the proposed methods. Key-Words: scene text detection text segmentation stroke width Hog feature Graph model

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Natural scene text localization using edge color signature

Localizing text regions in images taken from natural scenes is one of the challenging problems dueto variations in font, size, color and orientation of text. In this paper, we introduce a new concept socalled Edge Color Signature for localizing text regions in an image. This method is able to localizeboth Farsi and English texts. In the proposed method rst a pyramid using diff...

متن کامل

Automatic detection and recognition of Malayalam text from natural scene images

In this paper we describe a very simple and efficient method for the détection and recognition of the Malayalam text from colour natural scene images taken by a mobile phone camera. Malayalam text detection, skew correction of the detected text ,text segmentation and character recognition are the important steps in text understanding from natural scene images. Text understanding in natural scen...

متن کامل

A Comprehensive Study on Text Information Extraction from Natural Scene Images

In Text Information Extraction (TIE) process, the text regions are localized and extracted from the images. It is an active research problem in computer vision applications. Diversity in text is due to the differences in size, style, orientation, alignment of text, low image contrast and complex backgrounds. The semantic information provided by an image can be used in different applications suc...

متن کامل

Towards Text Recognition in Natural Scene Images

In this paper, we propose a novel methodology for text detection in natural scene images. The proposed methodology is based on an efficient binarization and enhancement technique followed by a suitable connected component analysis procedure. Image binarization successfully processes natural scene images having shadows, non-uniform illumination, low contrast and large signaldependent noise. Conn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014